A discrete de Rham method for the Reissner–Mindlin plate bending problem on polygonal meshes

نویسندگان

چکیده

In this work we propose a discretisation method for the Reissner–Mindlin plate bending problem in primitive variables that supports general polygonal meshes and arbitrary order. The is inspired by two-dimensional discrete de Rham complex which key commutation properties hold enable cancellation of contribution to error linked enforcement Kirchhoff constraint. Denoting k≥0 polynomial degree spaces h meshsize, derive proposed an estimate hk+1 k, as well locking-free lowest-order case k=0. theoretical results are validated on complete panel numerical tests.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An additive average Schwarz method for the plate bending problem

The original additive average Schwarz method and its variants were introduced for solving second order elliptic boundary value problems. In this paper, we extend the original idea to fourth order problems by designing a variant of the additive average Schwarz method for the plate bending problem using the nonconforming Morley finite element for the discretization. Like the original average meth...

متن کامل

A Meshless Local Petrov-Galerkin Method for Solving the Bending Problem of a Thin Plate

Meshless methods have been extensively popularized in literature in recent years, due to their flexibility in solving boundary value problems. The meshless local Petrov-Galerkin(MLPG) method for solving the bending problem of the thin plate is presented and discussed in the present paper. The method uses the moving least-squares approximation to interpolate the solution variables, and employs a...

متن کامل

A High-Capacity Data Hiding Method for Polygonal Meshes

This paper presents a high-capacity data hiding method for 3D polygonal meshes. By slightly modifying the distance from a vertex to its traversed neighbors based on quantization, a watermark (i.e., a string of binary numbers) can be embedded into a polygonal mesh during a mesh traversal process. The impact of embedding can be tuned by appropriately choosing the quantization step. The embedded d...

متن کامل

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

A fast multipole boundary element method for solving the thin plate bending problem

A fast multipole boundary element method (BEM) for solving large-scale thin plate bending problems is presented in this paper. The method is based on the Kirchhoff thin plate bending theory and the biharmonic equation governing the deflection of the plate. First, the direct boundary integral equations and the conventional BEM for thin plate bending problems are reviewed. Second, the complex not...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers & mathematics with applications

سال: 2022

ISSN: ['0898-1221', '1873-7668']

DOI: https://doi.org/10.1016/j.camwa.2022.08.041